RIR-MAPLE deposition of plasmonic silver nanoparticles
نویسندگان
چکیده
Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIRMAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.
منابع مشابه
Effects of Emulsion-Based Resonant Infrared Matrix Assisted Pulsed Laser Evaporation (RIR-MAPLE) on the Molecular Weight of Polymers
The molecular weight of a polymer determines key optoelectronic device characteristics, such as internal morphology and charge transport. Therefore, it is important to ensure that polymer deposition techniques do not significantly alter the native polymer molecular weight. This work addresses polymers deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE). By using ...
متن کاملFormation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering
Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanis...
متن کاملFast optoelectric printing of plasmonic nanoparticles into tailored circuits
Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic print...
متن کاملToward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.
Plasmonic silver nanoparticles have unique properties that lend themselves to unusual optical applications, potentially including use as absorption amplifiers in dye-sensitized solar cells (DSSCs). However, these particles are easily damaged under oxidizing conditions. Atomic layer deposition of TiO2 onto transparent-conductive-oxide-supported silver particles was examined as a means of protect...
متن کاملFabrication and Optical Spectral Characterization of Linked Plasmonic Nanostructures and Nanodevices
Linked plasmonic nanoparticles made of noble metal materials exhibit significant enhancement of the amplitude of electromagnetic-field and strongly frequency-selective response at visible ranges which are distinct from that of individual nanoparicles. We introduce recent progress in the fabrication processes to achieve linked plasmonic nanostructures with various configurations. It includes the...
متن کامل